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The equations of the theory of plastic media with strain hardening can be written in the 
form p] 

deij = deiT + de$, 
Gi; 

deiJC = 2~ , 
1-v 

tii = 7 ‘ii 

f (oij, eiy, xi, ki) = 0 

where Qi j and e, j are the components of the stress and strain tensors, respectively; 

ecjd and eijP are the components of the elastic and plastic strains, respectively; the 

prime indicates components of deviators; 4 = 0 is the yield surface; & are nonholonomic 
hardening parameters; and G,.&‘, v, and h are constants. 

Let us establish the position of the yield surface in stress space. Obviously, the position 

is completely determined by the values of the parameters and constants eijP, XC and ki. 
We now examine the rate of dissipation of mechanical energy 

D .== G&‘, 
deir 

eijp = -7 

In stress space the dissipation function is interpreted as the scalar product of the vector 

U and ep. In accordance with the flow rule, the vector en, is directed along the normal 
to the yield surface. For a convex yield surface, the direction of the normal uniquely 

determines the point on the yield surface. The vector EP therefore, uniquely determines 

the corresponding vector U and the scalar product 

D = aen (3) 

For a yield surface which has singularitites (edges, vertices), itis obvious thatdifferent 
vectors 9 can correspond to the same vector 0; nevertheless, the scalar product is un- 

iquely determined by specification of the vector 8s’. 
Analogously, if the yield surface has nonconcave parts, then one vector EP can corre- 

spond to different points of the yield surface. Nonetheless, the specification of the vect- 

or Q uniquely determines Expression (3). 
Thus, the following relation must hold 

(4) 

In accordance with (2) and (4) we can obtain 
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The left-hand side of (5) does not depend on time. The right-hand side must he indep- 

endent of the differential dt, Therefore, the dissipation function must be a hamogen- 

eous function of degree one in the components of the strain rate 

L> (E$‘~ e$‘. xi, ki) = E;: aD f &$ w 

It follows from (5) and (6) that 

(8D/aE,jP-Gij)8ijP=0 (7) 

For fixed parameters e$’ and xi we write the relation (2) in total differentials 

G*jdEijP i_ EijPda+j = (all / ae(jP) dqj” (8) 

From the flow rule for fixed parameters e$’ and xi it follows that 

(9) 

Then from (8) we obtain 

eti = al3 f a$ P = D (a,?, eJI xi+ kg) (10) 

Eqs. (10) are in agreement with (7). 

We shall show that it is possible to construct a theory of plasticity which is based upon 

the definition of the dissipation function (23, We introduce the set of all possible strain 
rate components e#*, for which 

.D {%jp’9 eijp, xiJ4 B D (ei,-pa eijp, %4hl (ii) 

We introduce a maxirrmm principle analogous to the maximum principle of von Mises 

PI 
“j&j’ > crtjeijp WI 

The convexity ~no~co~ca~~} of the level surfaces of the dissipation function and the 
flow rtlle 

follow from the inequality (12). 

We shall assume that- the function D is homogeneous of degree one in the components 

eij’* in this case k = 1, The derivatives ~~~~a~j~ are homogeneous functions of degree 
zero in the components a+j’. Therefore, the six relations can be regarded as functions 

of five variables, e. g. n#/ellP, 

Assuming that the relations (13) can be solved for the qjp/SllP; then as a result of el- 
imination of the sij~ we obtain some finite relations of the form (1) which do nor con- 
tain strain rate components, 

By differentiating the relation t2). we obtain Eq. (8). Using (lo}. we obtain from Eq. 
(8) that e*+%CQ j = 0 04) 

Then by differentiating the relation obtained from (1) by fixing e# and xi , wk find 

af dCT*j = 0 
aaij 05) 



374 D. D. Ivlev 

Eqs. (l.4) and (l.5) may be considered for corresponding values of qj and pjlP, from 
which it follows that there is a multiplier I_1 such that 

will hold. 

The loading criterion is expressed in the form D 2 0, 

The correspondence between the .yield function and the dissipation function is indic- 

a ted in the Fig. 1, 

The convex portions ab and CK! of the level surface 

of the dissipation function correspond to the convex 
portions AB and A Cof the yield locus. The nonconvex 
portions aa, bb , and CC of the dissipation function 

c be correspond to the singularities A ,B, and Cof the 

Fig. 1. 
yield function. Finally, the acute angle bc corresp- 
onds to the nonconvex portion E. 

If a singularity of the dissipation function is formed by the intersection of the smooth 
surfaces 

0, = D, (&ij*I eijPa Xi! “i) (m = 1,2, . . ., h) 

then the following relation 131 holds: 

0.. = a, (CID,,, / 8eijP), a&o 
*’ (al+a,+...+an=i) 

The definition of the dissipation function solves the problem of inversion of the rel- 

ations between stress and strain in the theory of plastic media with strain hardening. 

As an example, let us consider a variant of the theory of translational strain hardening 

(Q ii - ceij*) (uii - ceijp) = q (eijp, xi, ki) 

where c is a function of the invariants of the tensor eijP and of the parameters ~1. 

According to the associated flow rule, 

E. .p = p (Q - cqjp) (17) 
23 

Multiplying Eq. (17) by Ufj - ceij* and summing on the scripts 6 and 3, we obtain 

(‘tj - ceij “) "ij p = D - ceijpeijP = prp ($8) 

Then multiplying (17) by .P 4, and summing on the scripts & and 3, we obtain 

e..*13.,~ = p (bu - ceijP) eijP = p(D-- ceijPeijP) v Y W-J) 

From Eqs. (18) and (19) we find the desired expression for the dissipation function 

D = j/m + ceijPei ’ 

According to (10). we obtain 

Taking into account that u2 = (eij%+jP)lq, we can obtain from (20) the origirM flow 
rule (1'7) and the yield surface. For c = 0 strain hardening occurs in which the yield 
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surface experiences no translation. 
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